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Abstract

We explore how, and if, free choice permission (FCP) can be accepted when we
consider deontic conflicts between certain types of permissions and obligations. FCP
can license, under some minimal conditions, the derivation of an indefinite number
of permissions. We discuss this and other drawbacks and present four Hilbert-style
classical deontic systems admitting a guarded version of FCP. The systems that
we present are not too weak from the inferential viewpoint, as far as permission is
concerned, and do not commit to weakening any specific logic for obligations.
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1 Introduction and Background

A significant part of the literature in deontic logic revolves around the discussions
of puzzles and paradoxes which show that certain logical systems are not
acceptable—typically, this happens with deontic KD, i.e., Standard Deontic
Logic (SDL)—or which suggest that obligations and permissions should enjoy
some desirable properties.

One well-known puzzle is the the so-called Free Choice Permission paradox,
which was originated by the following remark by von Wright in [24, p. 21]:

“On an ordinary understanding of the phrase ‘it is permitted that’, the
formula ‘P(p ∨ q)’ seems to entail ‘Pp ∧Pq’. If I say to somebody ‘you may
work or relax’ I normally mean that the person addressed has my permission
to work and also my permission to relax. It is up to him to choose between
the two alternatives.”

Usually, this intuition is formalised by the following schema:

P(p ∨ q)→ (Pp ∧Pq) (FCP)

Many problems have been discussed in the literature around FCP: for a com-
prehensive overview, discussion, and some solutions, see [15, 11, 22].
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Three basic difficulties can be identified, among the others [11, p. 43]:

• Problem 1: Permission Explosion Problem – “That if anything is
permissible, then everything is, and thus it would also be a theorem that
nothing is obligatory,” [22], for example “If you may order a soup, then it is
not true that you ought to pay the bill” [6];

• Problem 2: Closure under Logical Equivalence Problem – “In its
classical form FCP entails that classically equivalent formulas can be substi-
tuted to the scope of a permission operator. This is also implausible: It is
permitted to eat an apple or not iff it is permitted to sell a house or not”;

• Problem 3: Resource Sensitivity Problem – “Many deontic logics be-
come resource-insensitive in the presence of FCP. They validate inferences
of the form ‘if the patient with stomach trouble is allowed to eat one cookie
then he is allowed to eat more than one’ ”.

We focus on another basic problem: how, and if, FCP can be accepted when
we have incompatibilities between certain varieties of permissions and prohi-
bitions/obligations. The issue is that since Problem 1 licenses the derivation
that anything is permitted provided that something is permitted, no prohibi-
tion/obligation is allowed, otherwise we get an inconsistency [22]. In doing so,
we offer simple logics that take two of the three problems above into account.

The layout of the paper is as follows. The remainder of this section briefly
comments on the three major problems mentioned above: the Permission Ex-
plosion Problem (Section 1.1), the Closure under Logical Equivalence Problem
(Section 1.2), and the Resource Sensitivity Problem (1.3). Section 2 illustrates
the theoretical intuitions and assumptions that we adopt to analyse free choice
permission. In particular, we assume the distinction between norms and obliga-
tions/permissions, and we study the role of deontic incompatibilities, the duality
principle, and why free choice permission is strong permission. Section 3 quickly
reviews some work that have direct implications for our proposal. Finally,
Section 4 presents some minimal deontic systems, four Hilbert-style deontic
systems admitting guarded variants of FCP: the systems that we present are
not too weak from the inferential viewpoint, as far as permission is concerned,
and do not commit to weakening any specific logic for obligations. Some con-
clusions end the paper. An appendix offers proofs of the formal properties of
the proposed systems presented in Section 4.

1.1 Problem 1: Permission Explosion Problem

One of the most acute problems springing from FCP is obtained in SDL, where,
if at least one obligation Op is true, then by necessitation and propositional
logic, we get O(p ∨ q). Since axiom D is in SDL, i.e Op→ ¬O¬p is valid, we
trivially obtain ¬O¬(p ∨ q), thus, assuming the Duality principle

P =def ¬O¬ (Duality)

we derive through FCP that Pq. Hence, SDL licenses that, if something is
obligatory, then everything is permitted.
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However, a careful analysis shows that this undesired result is not strictly
due to SDL as such, but to adopting any monotonic modal deontic logic [10],
i.e. any system just equipped with inference rule RM:

` p→ q

` Op→ Oq
. (RM)

or, alternatively with
` p ≡ q

` Op ≡ Oq
. (RE)

plus the following axiom schema

O(a ∧ b)→ (Oa ∧Ob). (M)

Indeed, assume Classical Propositional Logic (CPL), FCP, and RM for
P 1 and consider the following derivation:

1. p→ (p ∨ q) CPL
2. Pp→ P(p ∨ q) 1,RM
3. Pp→ (Pp ∧Pq) 2,FCP,CPL
4. Pp→ Pq 3,CPL

In this context, it is enough if we have that Pp is true to derive that any other
permission Pq, i.e., Pp ` Pq for any p, q. Whenever FCP is accepted, such a
problem strictly depends on the characteristic schemas and inference rules of
monotonic modal logics, as the above derivation—or a simple semantic analysis—
shows. Hence, permission explosion is not a problem of SDL, but of any weaker
modal deontic logic which is at least closed under classical implication or which
is closed under logical equivalence and allows for the distribution of P over
implication. Notice that Duality plays no substantial role. Accordingly, we
can have that RM is valid for permission, if P and O are duals and the logic
for O is a monotonic modal logic, or P is independent of O and RM is assumed
for P.

In conclusion, if we want not to completely reject the intuition behind
FCP, we have two non-exclusive options to be explored in order to avoid the
Permission Explosion Problem:

No-CPL: abandon CPL and adopt suitable non-classical logical connectives;

No-RM: abandon inference rule RM (or schema M) and endorse very weak
modal logics (i.e., the classical ones [10, chap. 8]). 2

Our paper aims at exploring under what conditions No-CPL can be avoided
by accepting at least a restricted version of FCP. Hence, it seems that No-RM
thesis must be accepted.

1 With RM-P we mean the inference rule ` p → q/ ` Pp → Pq. Indeed, it is standard
result that every system closed under RM for an operator is closed under the rule of the
dual of the operator [cf. 10, p. 238–239, 243]. We will use RM to refer in general to the rule
` p → q/ ` 2p → 2q for any modal operator 2.
2 We state in Section 1.2 why it is convenient not to drop RE.
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1.2 Problem 2: Closure under Logical Equivalence Problem

In the previous section we mentioned that RM must be weakened. Hence, we
can also drop RE and keep axiom schema M. This choice could look satisfactory
for those who consider problematic the fact that the logic for P is closed under
logical equivalence.

We take here another route. Incidentally, one can argue that the implau-
sibility of “It is permitted to eat an apple or not iff it is permitted to sell
a house or not” does not depend on RE, but rather on the fact that “It is
permitted to eat an apple or not” is P>, which looks quite odd. However,
besides this problem—which would lead us to commit to specific philosophical
views—dropping RE has in general two controversial technical side effects:

• it rejects standard semantics for modal logics, since the class of all neigh-
bourhood frames validate RE: [10] argued in fact that classical systems (i.e.,
containing RE but not RM) are the minimal modal logics;

• it fails to make, for instance, Op and P¬p logically incompatible under the
Duality Principle (while Op and ¬Op of course are); similarly, O¬p and
O¬¬p, or O(p ∨ q) and O(¬p ∧ ¬q), are not incompatible too (while they of
course should be).

In conclusion, we standardly assume that RE holds both for permissions
and obligations, which means that any logic for free choice permission must be
a classical system of deontic logic in [10]’s sense, i.e., any modal deontic logic
closed under logical equivalence and not under logical consequence.

1.3 Problem 3: Resource Sensitivity Problem

It has been noted [19] that from “You may eat an apple or a pear”, one can
infer “You may eat an apple and that You may eat a pear”, but not “You may
eat an apple and a pear” [7, p. 2].

We simply observe that the systems proposed in Section 4 do not license in
general the inference above. However, a thoughtful treatment of this problem—
the Resource Sensitivity Problem—goes beyond the scope of this paper. In
fact, it has been widely discussed in the literature that it is strictly related to
considerations from action theory, which have often found solutions shifting
from CPL to non-classical logics such as the substructural ones [see, among
others, 7, 4, 11]. In conclusion, we do not commit here to find any suitable
solution to such a problem.

2 Three Basic Intuitions

We are going to present some deontic systems that accommodate restricted
variants of FCP. This is done under some minimal philosophical assumptions,
which can in principle be compatible with several deontic theories. In this
section, we illustrate such fundamental intuitions and assumptions.
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2.1 The Distinction between Norms and Obligations

We assume in the background a conceptual distinction between norms, on one
side, and obligations and permissions, on the other side. The general idea
of norms is that they describe conditions under which some behaviours are
deemed as ‘legal’. In the simplest case, a behaviour can be qualified by an
obligation (or a prohibition, or a permission), but often norms additionally
specify the consequences of not complying with them, and what sanctions
follow from violations and whether such sanctions compensate for the violations.
The scintilla for this idea is the very influential contribution [1], which is
complementary to the (modal) logic-based approaches to deontic logic. The
key feature of this approach is that norms are dyadic constructs connecting
applicability conditions to a deontic consequence. A large number of such pairs
would constitute an interconnected system called a normative system [for more
recent proposals in this direction, see 20, 21, 14, 12].

To be clear, this paper does not present any logic of norms, but our proposal
for a logic of obligations and permissions—with restricted variants of FCP—can
be better understood if one keeps in mind some intuitions about how norms
should logically behave and about the relation between the logic of norms and
deontic logic. In particular, our assumptions are:

• obligations and permissions exist because norms generate them when applica-
ble;

• once obligations and permissions are generated from norms—which requires
us to reason about norms—we can still perform some reasoning with the
resulting obligations and permissions—this is the task of deontic logic in a
strict sense, i.e., the logic of obligations and permissions;

• norms can be in conflict—without being inconsistent— but this does not hold
for obligations and permissions.

Hence, we distinguish two levels of analysis: a norm-logic level and a resulting
deontic-logic level . This paper only technically deals with the second level of
analysis.

Assume for example that we have two norms n1 : p ⇒ O¬q and n2 : p ⇒
Pq, where ⇒ is any if-then suitable logical relation connecting applicability
conditions of norms and their deontic effects. We can indeed have them—for
example, in a legal system—but the point is what obligations/permissions
we can obtain from them. A rather standard assumption is that in order to
correctly derive deontic conclusions we need to solve the conflict between n1

and n2. Specifically, our general view is prudent (or skeptical, as one says
in non-monotonic logics), because, unless we know how to solve the conflict
(typically, by establishing that n1 is stronger than n2 or vice versa), we do not
know if O¬q or Pq holds. Since we do not accept that both can hold, it is
pointless to consider at the deontic level that O¬q and Pq are true—while any
logic of norms can have both n1 and n2.

In conclusion, we impose deontic consistency at the deontic-logic level, i.e.,
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Op ∧O¬p→ ⊥.

2.2 Deontic Incompatibilities, Duality, and FCP

With the above said, the issue is whether FCP is an appropriate principle
to adopt for normative reasoning. Our view is that this principle in general
is not, even when Problem 1 and 2 above are solved. We provide below a
simple counterexample to it, which considers the interplay between free choice
permissions and prohibitions.

Example 2.1 When you have dinner with guests the etiquette allows you to
eat or to have a conversation with your fellow guests. However, it is forbidden
to speak while eating.

The full representation of the example is that each choice is permitted when
one refrains from exercising the other one. In a situation when one eats, there
is the prohibition to speak, while when one speaks, there is the prohibition
to eat. Hence, it means that we can detach any single permission only if the
content of such permission is not forbidden. Given that Example 2.1 provides
a counterexample to FCP, the question is whether we want to derive the
individual permissions when one of the two disjuncts holds and we already
satisfy the disjunctive permission. The reason is that the individual permissions,
each on its own, can trigger other obligations or permissions. The following
example illustrates this scenario.

Example 2.2 Suppose a shop has the following policy for clothes bought online.
If the size of an item is not a perfect fit, then the customer is entitled to either
exchange the item for free or to keep the item and receive a 10$ refund. However,
customers electing to keep the item are not entitled to the refund, and customers
opting for the refund are not entitled to exchange the item for free. Furthermore,
customers who elect to exchange the item (when entitled to do so) have to
return it with the original package.

The example can be formalised as follows:

online ∧ ¬fit → P(exchange ∨ refund)

exchange → O¬refund

refund → O¬exchange

Pexchange ∧ exchange → Ooriginal

Suppose that a customer elects to exchange an item bought online that is
not a perfect fit instead of asking for the refund. Intuitively, given that we
cannot derive that exchanging is not forbidden (O¬exchange) at least the
weak permission of exchanging the item should hold. However, in a deontic
logic without FCP (or a restricted version of it) we are not able to derive the
permission, and then we are not able to derive other obligations or permissions
depending on it: in the example, the obligation to return the item with the
original package.
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We will return in Section 2.3 to the logical import of the above scenarios in a
classical system of deontic logic. For the moment, taking stock of the examples
we just notice that FCP could be reformulated as follows:

(P(p ∨ q) ∧ (¬O¬p ∧ ¬O¬q))→ (Pp ∧Pq). (1)

However, assuming Duality, ¬O¬p is equivalent to Pp, thus (1) reduces to

(P(p ∨ q) ∧ (Pp ∧Pq))→ (Pp ∧Pq). (2)

(2) is a propositional tautology. Thus, (1) does not extend the expressive power
of the logic unless one assumes a logic where obligation and permission are not
the duals.

2.3 Strong Permission, Classical Systems, and FCP

When permission is no longer the dual of obligation, we enter the territory of
strong permission [25, 3, 2] 3 . As is well-known, while it is sufficient to show
that O¬p is not the case to argue that p is weakly permitted, this does not
hold for strong permission, for which the normative system explicitly says that
there exists at least one norm permitting p [2, p. 353–355].

In order to keep track of these two cases at the deontic-logic level, we can
standardly distinguish in the deontic language two permission operators, Pw

for weak permission (such that Pwp =def ¬O¬p) and Ps for strong permission
(where Duality does not hold).

What is the minimal logic of strong permission at the deontic level in which
some reasonable version of free choice permission can be accepted?

We mentioned that RM must be rejected. In fact, besides the Permission
Explosion Problem, one may also argue that it is reasonable not to derive
Ps(p ∨ q) from any Psp because we could have in the background that the
normative system consists just of an explicit norm a⇒ Psp. If we have that,
in presence of some version of free choice permission, you may also detach
Psq, which is against the above-mentioned intuition that the strong permission
should follow from explicit norms, or from combinations of them in normative
systems where all disjuncts are explicitly considered [see, e.g., the discussion in
2, p. 354–355].

Second, as said above, deontic consistency should be ensured:

Op ∧Ps¬p→ ⊥ (Ds)

Op ∧O¬p→ ⊥ (Dw)

Notice that Dw is the standard D axiom of Standard Deontic Logic establishing
the so called external consistency of obligations that, in turn, implies consistency
among obligations and (weak) permissions. From Ds we obtain, as expected,

3 Besides von Wright’s theory [25], there is another sense in the literature of strong permission
[16].
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that strong permission entails weak permission [see, e.g., 2, p. 354], but not the
other way around:

Psp→ Pwp.

This is reasonable because the fact that at the norm-level we derive that p is
permitted using an explicit permissive norm n means that no prohibitive norm
n′ (forbidding p) successfully applies or prevails over n.

What about free choice permission? Coupling Assumptions 1 and 2 with the
distinction between weak and strong permission allows us to identify a guarded
variant of FCP for strong permission, consisting of two schemata:

(Ps(p ∨ q) ∧O¬p)→ Psq (FCPO)

(Ps(p ∨ q) ∧Pwp ∧Pwq)→ (Psp ∧Psq) (FCPP)

These schemata take stock of what we said: you can detach from a disjunc-
tive strong permission any single strong permission only if this last is weakly
permitted.

The idea of the combination of the two axioms is that from repeated
applications of FCPO and from a disjunctive permission, we can obtain the
maximal sub-disjunction such that no element is forbidden, and then, the
application of the FCPP allows us to derive the individual strong permissions
that are not forbidden. Notice that we cannot assume the following formula as
the axiom for free choice permission.

Ps

( n∨
i=1

pi

)
∧
(m<n∧

j=1

O¬pj
)
→

n∧
k=m+1

Pspk

The problem is that we do not know in advance how many elements of the
disjunctive permission are (individually) forbidden. Consider for example, a
theory consisting of the following formulas:

Ps(p ∨ q ∨ r ∨ s ∨ t) O¬p O¬q O¬r

Here, one could use the conjunction O¬p∧O¬q to obtain Psr, Pss and Pst, but
then we have a contradiction from Psr and O¬r (from axiom Ds). Notice, that
in general, we are not able to use FCPO to detach a single (strong) permission,
but a disjunction corresponding to the “remainder” of the disjunction, that is,
in the case above, Ps(s∨ t). Then, we can use the FCPP to “lift” the remaining
elements from weak permissions to strong permissions. The only case when
we can obtain an individual strong permission from a permissive disjunction is
when the remainder is a singleton; but this means, that all the other elements of
the permissive disjunction were forbidden. This further means that a disjunctive
strong permission holds if at least one of its elements can be legally exercised.
Going back to the example, if one extends the theory with O¬s, then we can
derive Pst.
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Consider the situation described in Example 2.1. The scenario can be
formalised as follows (where e and s stand for “to eat” and “to speak”):

Ps(e ∨ s)

s→ O¬e
e→ O¬s

In a logic endorsing the unrestricted version of free choice permission, we have
Pse and Pss. This means that as soon as one exercises one of the choices, we get
that the other choice is at the same time permitted and forbidden, a situation
that is either paradoxical or contradictory. Thus, the only way to avoid this
kind of conflict is to refrain from exercising any of the two choices. However, this
means that one is not really free to choose between the two options. Accordingly,
either one has to adopt a restricted version of the free choice permission or
abandon it. Notice, that axiom FCPO allows us to conclude that given e, s
is forbidden (O¬s), and thus that e is permitted (Pse); similarly, one gets Pss
from s, which implies O¬e. Similarly, for Example 2.2 when we formalise it
using strong permission Ps instead of P, Axiom FCPO allows us to derive
Psexchange from which we can conclude Ooriginal .

Consider FCPP. One may argue why, in symmetry with FCPO, we cannot
rather have

(Ps(p ∨ q) ∧Pwp)→ Psp (FCP2P)

Technically, it is obvious that FCP2P implies FCPP but not the other way
around, so both options are available. The variant FCPP is more prudent in
that it licenses the detachment of an individual strong permission only if the
normative system explicitly deals with that specific disjunct, while the second
allows for the derivation in a slightly more relaxed way. So, if one wants to
strictly reframe the structure of standard FCP in a guarded version but does
not want FCP2P, then FCPP is the right option.

We should notice that the above schemata for free choice permission do
not necessarily require the technical idea of deontic consistency, unless we
assume—but we don’t—that obligation implies strong permission, and despite
the fact that the consistency problem can occur if we endorse Ds—as we do—
and so that strong permission implies weak permission.

3 Related Works

Most of the work on the development of logical systems related to the problem
of Free Choice Permission concentrate on logics accepting the FCP principle.
Some work focus on the resource aspects and propose the use of substructural
logics to address the problem, see for example [7]. Similarly to our work, in
the sense of a non-normal deontic logic, is the proposal in [6, 5]. In fact, even
though they have a different philosophical backgrounds based on the of open
reading of permissions [17, 9], they propose simple non-normal axiomatisations
for obligation and permission—as we do—which avoid, e.g., Problem 1 and
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which are based on the concept of free choice permission as strong permission
or, anyway, as a type of permission without Duality.

The scenario in Example 2.2 indicates that Deontic Logic should accept
FCP, but at the same time Example 2.1 points out that it cannot accept in an
unrestricted form. In this regard, the proposal by Asher and Bonevac [6] shares
with us the idea of limiting the applicability of FCP. Their solution is based
on a deontic logic taking a non-monotonic logic as the underlying reasoning
mechanism instead classical propositional logic as we do. Accordingly, in their
system instances of FCP are derivable unless they are defeated. In addition,
their logic is not closed under logical equivalence.

4 Four Minimal Deontic Axiomatisations with Guarded
Free Choice Permission

Finally, we present some minimal deontic systems, four Hilbert-style deontic
systems admitting a guarded version of FCP. The systems that we present are
not too weak from the inferential viewpoint, as far as permission is concerned,
and do not commit to weakening any specific logic for obligations.

4.1 Language, Axioms and Inference Rules

The modal language and the concept of well formed formula are defined as usual
[see 10, 8]. We just recall that we have three modal operators, two 2 operators,
O for obligations and Ps for strong permissions, and Pw for weak permission.
As usual, we assume Pw to be an abbreviation for ¬O¬.

For convenience, let us synoptically recall below all relevant schemata and
inference rules, where 2 ∈ {O,Ps}.
Inference Rules:

RE := ` A ≡ B ⇒ ` 2A↔ 2B

RM := ` A→ B ⇒ ` 2A→ 2B

Schemata:

M := 2(p ∧ q)→ (2p ∧2q)

FCPO := (Ps(p ∨ q) ∧O¬p)→ Psq

FCPP := (Ps(p ∨ q) ∧Pwp ∧Pwq)→ (Psp ∧Psq)

FCP2P := (Ps(p ∨ q) ∧Pwp)→ Psp

Ds := Op ∧Ps¬p→ ⊥
Dw := Op ∧Pw¬p→ ⊥
PsPw := Psp→ Pwp.

Given the discussion of Section 2, we can identify some deontic systems, as
specified in Table 1. Notice that we consider also systems FCP2 and FCP4,
which are monotonic, so they contain RM. Strictly speaking, this is the limit
which we cannot trespass, since we have restricted forms of Permission Explosion.
We will return on this in the concluding section of the paper.
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Deontic System Properties Derivable

E := RE
Min := RE⊕Ds ⊕Dw PsPw

FCP1 := Min⊕ FCPO ⊕ FCPP PsPw

FCP2 := FCP1 ⊕M FCP1 ⊂ FCP2 PsPw

FCP3 := Min⊕ FCPO ⊕ FCP2P FCP1 ⊂ FCP3 PsPw, FCPP

FCP4 := FCP3 ⊕M FCP2 ⊂ FCP4 PsPw, FCPO

FCP3 ⊂ FCP4 FCPP, FCP2P

Table 1
Deontic Systems

4.2 Semantics and System Properties

Let us begin with standard concepts. Assume that PROP is the set of atomic
sentences.

Definition 4.1 A deontic neighbourhood frame F is a structure 〈W,NO,NP〉
where

• W is a non-empty set of possible worlds;

• NO and NP are functions W 7→ 22
W

.

Definition 4.2 A deontic neighbourhood model M is a structure
〈W,NO,NP, V 〉 where 〈W,NO,NP〉 is a deontic neighbourhood frame
and V is an evaluation function PROP 7→ 2W .

Definition 4.3 [Truth in a model] Let M be a model 〈W,NO,NP, V 〉 and
w ∈W . The truth of any formula p in M is defined inductively as follows:

(i) standard valuation conditions for the boolean connectives;

(ii) M, w |= Op iff ||p||M ∈ NO(w),

(iii) M, w |= Psp iff ||p||M ∈ NP(w),

(iv) M, w |= Pwp iff W − ||p||M 6∈ NO(w),

where, as usual, ||p||M is the truth set of p wrt to M

||p||M = {w ∈W :M, w |= p} .

A formula p is true at a world in a model iff M, w |= p; true in a model M,
writtenM |= p iff for all worlds w ∈W ,M, w |= p; valid in a frame F , written
F |= p iff it is true in all models based on that frame; valid in a class C of
frames , written C |= p, iff it is valid in all frames in the class. An inference rule
P1, . . . Pn ⇒ C (where P1, . . . Pn are the premises and C the conclusion) is valid
in a class C of frames iff, for any F ∈ C, if F |= P1, . . . ,F |= Pn then F |= C 4 .

We can now characterise different classes of deontic neighbourhood frames
that are adequate of the deontic systems in Table 1.

4 Of course, if any Pk has the form ` p then F |= P1 trivially means F |= p.
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Definition 4.4 [Frame Properties] Let F = 〈W,NO,NP〉 be a deontic neigh-
bourhood frame.

• 2-supplementation : F is 2-supplemented , 2 ∈ {O,P}, iff for any w ∈W
and X,Y ⊆W , X ∩ Y ∈ N2(w)⇒ X ∈ N2(w) &Y ∈ N2(w);

• Pw-coherence : F is Pw-coherent iff for any w ∈ W and X ⊆ W , X ∈
NO(w)⇒W −X 6∈ NO(w);

• Ps-coherence : F is Ps-coherent iff for any w ∈ W and X ⊆ W , X ∈
NP(w)⇒W −X 6∈ NO(w);

• FCPO-permission : F is FCPO-permitted iff for any w ∈W and X,Y ⊆W ,
X ∪ Y ∈ NP(w) &W − Y ∈ NO(w)⇒ X ∈ NP(w);

• FCPP-permission : F is FCPP-permitted iff for any w ∈W and X,Y ⊆W ,
X ∪Y ∈ NP(w) &W −X 6∈ NO(w) &W −Y 6∈ NO(w)⇒ X ∈ NP(w) &X ∈
NP(w);

• FCP2P-permission : F is FCP2P-permitted iff for any w ∈W and X,Y ⊆
W , X ∪ Y ∈ NP(w) &W −X 6∈ NO(w)⇒ X ∈ NP(w);

Below are some relevant characterisation results. All the proofs for this section
are in the Appendix.

Lemma 4.5 For any deontic neighbourhood frame F ,

(i) Ds is valid in the class of Ps-coherent frames;

(ii) Dw is valid in the class of Pw-coherent frames;

(iii) FCPO is valid in the class of FCPO-permitted frames;

(iv) FCPP is valid in the class of FCPP-permitted frames;

(v) FCP2P is valid in the class of FCP2P-permitted frames;

Completeness results for the four deontic systems are ensured.

Theorem 4.6

(i) E is sound and complete w.r.t. the class of deontic neighbourhood frames;

(ii) Min is sound and complete w.r.t. the class of Ps- and Pw-coherent frames;

(iii) FCP1 is sound and complete w.r.t. the class of FCPO- and FCPP-
permitted frames;

(iv) FCP2 is sound and complete w.r.t. the class of P-supplemented, FCPO-
and FCPP-permitted frames;

(v) FCP3 is sound and complete w.r.t. the class of FCPO- and FCP2P-
permitted frames;

(vi) FCP4 is sound and complete w.r.t. the class of P-supplemented, FCPO-
and FCP2P-permitted frames.

Next, a corollary showing the relative strength of the four deontic systems.

Corollary 4.7
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(i) FCP1 ⊂ FCP2 ⊂ FCP4 and
FCP1 ⊂ FCP3 ⊂ FCP4.

(ii) Let L1,L2 ∈ {FCPi, 1 ≤ i ≤ 4}, and let C1 and C2 be classes of frames
adequate for L1 and L2. If L1 ⊂ L2 then C2 ⊂ C1.

Finally, we are going to examine the issue of decidability. To this end we
recall the result by Lewis [18], who proved that every intensional logic that is
axiomatisable by axioms that do not contain iterative operators (non-iterative
axioms) has the finite model property; A formula (axiom) A is non-iterative iff
for every subformula 2iB/3iB of A, B does not contain a modal operator. It is
immediate to verify that the axioms Ds, Dw, M, FCPO, FCPP and FCP2P

are non-iterative, hence we have the following theorem.

Theorem 4.8 The logics FCP1, FCP2, FCP3 and FCP4 have the finite
model property, and hence are decidable.

5 Conclusions

In this paper we have investigated how, and if the notion of free choice permission
is admissible in modal deontic logic. As is well known, several problems can
be put forward in regard to this notion, the most fundamental of them being
the so-called Permission Explosion Problem, according to which all systems
containing FCP and closed under RM and RM-P license the derivation of
any arbitrary permission whenever at least one specific permission is true.

We argued (Section 1.1) that a plausible solution to this problem is to jump
from monotonic into classical deontic logics, i.e., systems closed under RE but
not RM. This solution does not necessarily mean that the resulting deontic
system is very weak, as far as permission is concerned, if further schemata are
added (Sections 2.3 and 4.2).

The basic intuitions for extending classical deontic logics are the following:

(i) We assume in background the distinction between norms and obliga-
tions/permissions. While we conceptually accept that the normative system
may contain conflicting norms, it is logically inadmissible that such norms
generate actual conflicting obligations/permissions since conflicts must
be rationally solved, otherwise no obligation/permission can be obtained;
hence, we validate schemata Ds and Dw;

(ii) Free choice permission is strong permission, meaning that it is a permission
generated by explicit permissive norms;

(iii) The possibility of detaching single strong permissions from disjunctive
strong permissions, i.e., Psq from Ps(p ∨ q) strictly depends on the fact
that O¬p is not the case.

Taking the above points into account, we thus proposed different guarded
variants of FCP that significantly increase the inferential power of the logic. In
particular, four Hilbert-style classical deontic systems were presented.

We observed that two of these systems are classical modal systems, while we
can have other two acceptable systems which are monotonic. In fact, the fact
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that those two systems are closed under RM does not lead to full Permission
Explosion, but only to a “controlled” version of it: indeed, in systems like
FCP2 any permission is obtainable via free choice permission only if it is not
incompatible with existing prohibitions.

Some directions for future work can be identified. In particular:

• It is still an open issue to fully discuss the Resource Sensitivity Problem in
our setting. In fact, while we argued that this problem goes beyond our paper,
there are scenarios where our intuitions are relevant for this problem as well.
For example, suppose that there is a fruit basket in the kitchen containing
a banana and an apple. Bob and Alice are permitted to eat the banana or
the apple and Alice first eats the former. Bob cannot do anything but take
the apple. However, if Bob is allergic of apples, so no permission can be
reasonably derived because it is forbidden for him to eat the apple.

• Our idea of free choice permission relies on the fact that no strong permission
can be detached from a disjunctive permissive expression if another norm
allows for deriving a conflicting obligation. Hence a full understanding
of schemata such as FCPO or FCPP may benefit for an explicit logical
treatment of the logic of norms adopting defeasible reasoning [11]; we plan
to investigate how to integrate the approach presented in the paper and the
computationally oriented approach offered by Defeasible Deontic Logic [13].
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A Basic Properties of the Deontic Systems

Let us start by proving Lemma 4.5.

Lemma 4.5 For any deontic neighbourhood frame F ,

(i) Ds is valid in the class of Ps-coherent frames;

(ii) Dw is valid in the class of Pw-coherent frames;

(iii) FCPO is valid in the class of FCPO-permitted frames;

(iv) FCPP is valid in the class of FCPP-permitted frames;

(v) FCP2P is valid in the class of FCP2P-permitted frames;

Proof. The proof for case (i) is straightforward. The proof of (ii) is trivial and
standard. Both are omitted.

Case (iii) – Consider any frame F that is FCPO-permitted but such that
F 6|= FCPO. This means that there exists a modelM = 〈W,NO,NP, V 〉 based
on F such that M 6|= FCPO, i.e., there is a world w ∈W where

M, w |= Ps(p ∨ q) ∧O¬p (A.1)

M, w 6|= Psq (A.2)
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By construction, from (A.2) we have ||q||M 6∈ NP(w), while from (A.1) we have
||p||M∪||q||M ∈ NP(w) and W−||p||M ∈ NO(w), so F is not FCPO-permitted .

Cases (iv) and (v) – The proofs are similar to the one for Case (iii) and are
omitted. 2

The definitions of some basic notions and of canonical model for the classical
bimodal logic E (just consisting of RE for O and Ps) are standard.

In the rest of this section when we refer to a Deontic System S we mean
one the logic axiomatised in Section 4.

Definition A.1 [S-maximality] A set w is maximal iff it is S-consistent and
for any formula p, either p ∈ w, or ¬p ∈ w.

Lemma A.2 (Lindenbaum’s Lemma) For any Deontic System S, any con-
sistent set w of formulae can be extended to an S-maximal set w+.

Definition A.3 [Canonical Model [10, 23]] A canonical neighbourhood model
M = 〈W,NO,NP, V 〉 for any system S in our language L (where S ⊇ E) is
defined as follows:

(i) W is the set of all the S-maximal sets.

(ii) For any propositional letter p, ‖p‖M := |p|S, where |p|S := {w ∈W | p ∈
w}.

(iii) If 2 ∈ {O,Ps}, let N2 :=
⋃

w∈W N2(w) where for each world w, N2(w) :=
{‖ai‖M | 2ai ∈ w}.

Lemma A.4 (Truth Lemma [10, 23]) IfM = 〈W,NO,NP, V 〉 is canonical
for E, then for any w ∈W and for any formula p, p ∈ w iff M, w |= p.

Thus, we have as usual basic completeness result for E. To cover the other
systems, it is enough to prove that all frame properties for the relevant schemata
and rules are canonical.

Lemma A.5 The frame properties of Definition 4.4 are canonical.

Proof. The proofs for 2-supplementation , Pw-coherence , and Ps-
coherence are standard.

FCPP-permission – Let us consider a canonical model M for FCPP, any
world w in it, and any truth sets such that ||p||M ∪ ||q||M ∈ NP(w) and
W − ||q||M ∈ NO(w). Clearly, ||p ∨ q||M ∈ NP(w). Since FCPP is valid
(Lemma 4.5), then Psp ∈ w. By construction, this means that ||p||M ∈ NP(w),
thus the model is FCPP-permitted.

FCPO-permission and FCP2P-permission– Similar to the case above.
2

Hence, the following result is ensured.

Theorem 4.6

(i) E is sound and complete w.r.t. the class of deontic neighbourhood frames;
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(ii) Min is sound and complete w.r.t. the class of Ps- and Pw-coherent frames;

(iii) FCP1 is sound and complete w.r.t. the class of FCPO- and FCPP-
permitted frames;

(iv) FCP2 is sound and complete w.r.t. the class of P-supplemented, FCPO-
and FCPP-permitted frames;

(v) FCP3 is sound and complete w.r.t. the class of FCPO- and FCP2P-
permitted frames;

(vi) FCP4 is sound and complete w.r.t. the class of P-supplemented, FCPO-
and FCP2P-permitted frames.

Finally, let us prove Corollary 4.7.

Corollary 4.7

(i) FCP1 ⊂ FCP2 ⊂ FCP4 and
FCP1 ⊂ FCP3 ⊂ FCP4.

(ii) Let L1,L2 ∈ {FCPi, 1 ≤ i ≤ 4}, and let C1 and C2 be classes of frames
adequate for L1 and L2. If L1 ⊂ L2 then C2 ⊂ C1.

Proof. Case (i) – For FCP1 ⊂ FCP2 the inclusion is trivial given that every
axiom of FCP1 is also an axiom of FCP2. To show that the inlcusion is strict
consider the model M = 〈W,NO,NP, V 〉, where:

• W = {w1, w2, w3, w4, w5};
• V (a) = {w1, w4, w5}, V (b) = {w2, w3, w4} and V (c) = {w1, w2};
• NO(w1) = {{w4}}; and

• NP(w1) = {{w1, w2, w3} , {w1, w2}}.
It is easy to verify that the model is FCPO-permitted, Ps(¬a∨ c) and O(a∧ c)
are true in w1: ||¬a ∨ c||M = {w1, w2, w3} ∈ NP(w1) and ||a ∧ c||M = {w4} ∈
NO(w1). However, the model is not O-supplemented: ||a ∧ c||M = {w4} ∈
NO(w1), {w4} = ||a||M ∩ ||c||M, but ||a||M, ||c||M /∈ NO(w1), falsifying the
following instance of M: O(a ∧ c)→ Oa ∧Oc.

For FCP1 ⊂ FCP3 it is immediate to verify that FCP2P implies FCPP

in CPL but not the other way around, and the same relationship holds for the
corresponding semantic conditions.

For FCP2 ⊂ FCP4, the result follows from FCP1 ⊂ FCP3.
For FCP3 ⊂ FCP4, the inclusion is trivial and we can reuse the model to

show the strictness of the inclusion between FCP1 and FCP2.
Case (ii) – The result follows from Case (i) above and Theorem 4.6. 2
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